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"How can a computer be made to recognize
a human face? This question remains un-
answered, because pattern recognition by
computer is still tio crude to achieve
automatic identification of objects as
complex as faces."

Leon D. Harmon
November, 1973 ]i
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INTRODUCTION

H 1.1 Problem Formulation

'l The use of computers for the recognition of two-dimensional

SI!

images has been the subject of theoretical and experimental research

!ifor over a decade [1,2,3,41. Originally spurred by the problem o

character recognition for computer input, researchers have recently -

I_ begun [5,6,7] to branch out and consider the recognition of other,

i! more compler, two-dimentional imag"s. This thesis describes an attempt

to apply a pcrtion of the large body of pattern recognition theory to

ii

1.1 problem Formuachn eontionofhmfae.Scamcin

Toldheaue ofvou apomputiors for thyerecsntona idfnto-ifiensionalr

is mostly experimental in nature, its purpose beirg to select the

best pattern recognition techniques for the prnblem and assemble them

into a working system.
I The problem m5 7 then be stated a3 follows: To d tonstrate that a

system capable of recognizing humans from their facial Su as achine

could hae obvaiousb appelica ionin cianmerso n ral tidenwtifiatin oretal

low error rate is possible using presently available hardware and pattern

recognition techniques. The ultimate goal of bles work might then be

into woring sstem

Th rbe a hnbesae •flos T ntaeta
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to have a television camera viewing th.e entrance to a restricted area

with the video output fed to a computer. I1 the computer is able to

identify faces, then it can perform a table look-up to find if a person

requesting entrance is authorized and take appropriate action (e.g.,

opening the door, or calling the security guard). Since this thesis

is concerned oaly with demonstrating that such a machine is possible,

existing hardware was used and the problem was simplified as much as

possitle. The details of the problem follow.

It was decided to define a ten class problem, that is, ten

people were chosen to comprise the input set. This number, although

too small for most practical applications, does provide a simple start-

ing point. The small number of classes allows the data generated to

be analyzed without time consuming calculations and also allows the

input data to be gathered in a reasonable period of time. By character

recognition standards, a ten class problem may not be iarge enough to

provide a fair test of the classification system. The work of Goldstein,

Harmon, and Lesk [81 indicates, however, that for facial recognition, a

ten class problem may be sufficient to provide some indication of how

the system wool16 respond to a larger problem. Again, it is not the

intent of this thesis to provide a practical pattern recognitinn system

for human faces, only to demonstrate its feasibility. The ten subjects

may be broken down into the followinp categories: four were female,

six were male, two wore glasses with dark plastic frames, two wore

wire rimmed glasses. The two-dimenaional imai • was obtained from a

it
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H ~television camera output interfaced directly to the computer f 9].

The video signal was quantized to only two levels, black or white,

with the quantization threshold level set by the operator. Because

of this severe quantization it was felt (after some preliminary exper-

imentation) that the profile view offered the most information and maxi-

mum repeatability from iuage to image. Profile views were thus used

exclusively in this work. A total of 120 images, 12 per subject,

were taken and stored on magnetic tape for processing. These 120

images comprised the inpitt set. The machine was designed to classify

an input image ao belonging to one of the ten classes and output its

classification. The possibility of an input image not belonging to

one of the ten classes was ignored in the interest of simplicity.

The rest of this chapter contains a survey of the work done in

the area of human face recognition, both by computer and human recogni-

zers. Chapter II provides a summary of the more prominent two-dimensional

pattern recognition techniques, with emphasis on the techniques inves-

tigated ',n this work. Chapter III discusses the results of machine

and human recognition on the 120 facial profiles. Chapter III also

describes two algorithms used to train the pattern recognition system

and experiments to verify their expected operation. Chapter IV gives a

description of the series of experiments performed to optimize the pattern

recognition techniques for the facial recognition problem. Chapter V

concludes the thesis with a suMmary of the results and a discussion of

areas for further research.

'5
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4 ii
1.2 Survey of Facial Recognition -

Virtually all of the previous work on the problem of facial |

recognition has dealt with syntactical information as may be found in

i set of roughly quantized descriptive features such as ear length, lip

thickness, chin profile, etc. [10,11]. No attempt to use statistical

recognition techniques [12] for the identification of faces has been

found. .1
The (irst work with syntactic recognition is tiiaz of Bertillon

[11] in the cle.sification of facial features for criminological appli -]
cation. Althongh later superceded by his work in fingerprint classifi-

cation, his facial descriptions were meticulously done and included

sets of descriptive names still used by law enforcement agencies. A &

more modern diccussion may be found in Allen [13].

The closest to an automatic recognition system is a man-machine

interactive approach described by Goldstein, Harmon and Lesk [10], and

Harmon [14]. This system ueed a 21-dimensional feature vector. The

vector components were descriptive features quantized on a scale of one

to five. Some examples of the features are: mouth width (short to

long), cheeks (sunken to full), and hair length (short to long). The

input set consisted of 255 faces and the values of the feature vector

components were determined by the average of assignments made by a panel

of ten human observers from three photographs (front, 3/4, and side

views) of each face. The feature vectors were entered into the computer

and a sorting algorithm used to order the vectors from best to worst

A4



match for some input description. The inp-at description was obtained

H by first having the operator sater the most "conspicuous" features of

the subject to be identified and then allowing the computer to request

S~features that would separate the vectors at the top of the rank-ordered

list. The procedure was stopped after ten of the 21 feature vector

S~co-ponents had been entered. Using this technique a recognition accuracy

of 70% was achieved.

Kays and Kobayashi f151 suggested that a set of geometric para-

S~meters could be used to describe a human face. They defined nlne para-

S~meters that were Euclidian distances between specified points on the

• front view of a face. Some typical parameters are h-Aght of lips, dis-

S~tance between upper 14.p and nose, distance between lower lip and chin,

and distance between corners of the eyes. All parameters were normalized ,

S~~by the nose length to provide size invariance. These parameters were -

i ~measured from a set of photographs of 62 people. A serial classification or

tree search algorithm was propose4 in which each parameter is used in

S~turn to reduce the population until only one face remained. A theoreti-

,: cal analys•is using assumed parameter probability distrilbutions and neg-

S~~ligible noise showed that the algorithm could achieve a recognition ,=E

S~accuracy of 90% within a population of 15,000 faces.•

" ~The other investigations of the recognition of human faces are

S~concerned with recognition by humans. Goldstein, Harmon, and Lesk

[8] describe a series of experiments leading to 22 subjective features

of human faces that are useful for recognition. The sample set consisted •

* ~ **~
,*.,~ ,.¾*~'*v''d*" ~ * -
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of Harmon's 255 faces, and ten "Jurors" were used to assign numerical

values to the features. The 22 features were selected from a set of 34, .1
the selection criteria being large variance over the sample set and

small variance over the jurors. The 22 features were tested for cor- I
relation and found to be largely independent by several tests. A

- model for classification by humans was proposed in which the features

were ordered from most "extreme" to least "extreme". Each feature was 1
- .1

selected in tura and faces with a feature value close enough (by some

constant threshold) to the specified feature value were kept, while

the rest were rejected. The number of features used to narrow the

sample set to one using this technique was found to depend logarithmically I

on the size of the sample set and an equation describing this dependence

was derived. Approximately six features for the 255 samples were used

and it was predicted using the previously derived equation that about 1
14 features would be necessary for a sample size of 4 x 106. The com-

puter model was verified with an experiment using human recognizers w.o

obtained a recognition accuracy of 53%.
.1

Goldstein and Mackenberg [161 experimented with facial rdcognition

by humans given only a portion of the face. The recognizer was required

to identify a known person from a photograph which had been masked so

that only a portion of the face was visible. This study indicated that

-; for recognition the upper parts of the face are more important than the "

lower parts. Recognition accuracy was generally better for pictures

that contained several of Harmon's 22 features than for pictures that

I ' I N.



ni

I 7,

contained few.

Harmon [17] reported an investigation into the mintmum amount

of information necessary for facial recognition by humans. Fourteen

front view photographs were digitized with a flying-spot scanner and

stored on magnetic tape. The high quality image (1024 x 1024 bits)

was fragmented into n x n squares and each square was assigned a

brightness equal to the average of the brightness values of all the ori-

4I ginal samples within the square. Brightness was quantized to 8 or 16

levels. The final picture thus obtained contained high frequency

noise corresponding to the block edges and although the energy content

of the high frequencies was small, recognition was improved ly low

pass filtering. It was hypothesized that this was due to the eye's

sensitivity to straight lines and regular geometric shapas. With the

facial image quantized to a 16 x 16 grid with 8 grey levels, an average

recognition accuracy of 48% was achieved by 28 human recognizers. The

results also indicated that the grid placement on the photographs may

be critical for optimum recognition. Harmon and Julesz [18] used the

same technique to investigate the effect of noioe on the recognition

of faces. They found that random noise at frequencies close to the

spatial quantization frequency "masked" the information and raised the

amount of information necessary for recognition, while random noise of
frequencies greater than two octaves removed from the quantization fre-

quency had little effect upon recogni'Aon.

Hochberg and Calper (19] tested the perception of, and memory

for, faces by humans. They found that recognition accuracy was

~- -i.~ 4
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hgniEicastl,7,greater for upright than for inverted photographs of

hinan faces. Faces that were learned from upright photographs seemed

to be tied to orientation, while faces learned from inverted photographs

did not seem to be tied 3trongly to orientation. Bradshaw and Wallace

[20] used an Identt-Kit to obtain i-.formation on how humans recognize

faces. Their results indicated that humans classify faces with a "serial

self-terminating" procedure, that is, each facial feature is considered

in turn until an identification is made, at which point the procedure

stops. They found no evidence for parallel processing, or GestalL

perception [21].

If pattern recognition is one side of a coin, then pattern

generation is the other (and usually more tractable) side. Two efforts

at the computer generation of faces, although not terribly germane to

the present work, are interesting enough to be mentioned. Gillenson

[22] designed a system for use by "non-artists" to reconstruct a line

drawing of the front view of a face on a cathode ray tube display.

The system was interactive with the user and consisted of a library

of stored features with routines to distort the features to obtain a 4

better likeness. Parke [23] developed a system to draw high quality

half-tone renderings of a human face in three-dimensional perspective.

The skin surfece was approximated by a net of polygons and a shading

algorithm was used to give a continuous curved appearance. The face

was represented by a matrix describing the polygon vertices, and anima-

tion was achieved by interpolating between the vertices' positions for

two end expressions.

.4 .4;
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In addition to the above, some qualitative work may be briefly

mentioned. The Identi-Kit is the best known semi-automatic system for

generating line drawings of the front view of a human face and is used

mainly by police departments. The Identi-Kit uses clear plastic over-

lays each having a single facial feature to form a composite picture.

There are several differeut overlays for each feature, so that by choosing

the appropriate features a reasonable facsimile of a specific human face

may be produced. There are several other similar systems in use, and a

summary of their differences and operation may be found in Gillenson [22].

Wall (24] indicates that criminological eyewitness identification

is virtually always subject to error unless the witness knew the subject

in advance of the act. The factors of fright, similarity of faces,

and poor and fast viewing conditions tend to make accurate recognition

difficult. Although artists have been drawing human faces for all of

history, there is little in artistic literature discussing the recogni-

tion of faces. Willis (251 mentions the different variations of facial

features and how they may be realistically represented in drawings.

The above survey points out the basic differences between the

previous work in facial recognition and the work described in this thesis.

This thesis describes the development of a completely automatic and

real time facial recognition system. This system uses statistical pat-

tern recognition techniques to classify facial profiles obtained from a

television camera input Previous systems have been at best man-machine

interactive with the facial features described to the machine by the

human observer from a photograph. Previous work has also depended upon

4.. II i ,4..
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syntactic pattern recognition with no investigation into the applicabili-

i ~ty of statistical pattern recognition to the problem. Finally, the

facial recognition system decie in this thesis provde the highest

recognition accuracy of any systm known to the author. .

-t.I
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CHAPTER II

PATTERN RECOGNITION TECHNIQUES

L In this chapter the pattern recognition aspects of this

L research are discussed. A short review of the two-dimensional pat-

tern recognition problem is provided, followed by a description of

II the hardware and some of the software involved in this particular

system.

2.1 Introduction

Although the term pattern recognition encompasses far more than

picture recognition, in the interest of conciseness, only the tech-

niques associated with two-dimensional image recognition and germane

to this work will be mentioned. Most designers of digital two-dimensional

[I pattern recognition machines seem to use a rather standard structure.

This basic form is shown in Figure 2.1. Most workers in the image

"recognition area ignore the problem of target acquisition. The scene

[J presented to the machine contains only the pattern to be recognized,

a simplification which may not be realistic outside the laboratory

. environment.

V The input device to the image recognition system may be non-

existent (i.e., the pattern is digitized by hand and entered through a

V standard peripheral), an array of photocells, a flying spot scanner, or

television camera. The input device is usually responsible for the

S~11
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'Iimage digitization. Prefiltering of the image may or may not be used.

q Prefiltering is used to remove any extraneous noise from the image,

and, in some cases, smooth the image boundary.

I The process of feature extraction, or image transformation, is

used to reduce the amount of information to be handled by the classifier

I-by extracti..g "features" from the image that are in some sense repre-

sentative of the image. It is desirable that these features be in-

rI variant with respect to image position (translation), size change, and

1 rotation, so that an image which is modified by any combination of the

above three transformat-.ns will be classified the same as the original

II image. Several techniqces for feature extraction from two-dimensional

images have been developed. The earliest used are the related tech-

ntques of cross-correlation, template matching, and matched filtering

S1(1,26]. These methods compare a stored pattern against the input image

and produce a single metric which is related to the 'goodness of match'.

S These techniques have several disadvantages. Since comparison patterns

(templates) must he stored, the machine Tiemory size must be very large

even for simple recognition problems consisting of only a few classes

"with small image sizes (large quantization intervals). In general thesc

techniques are not size or rotation invariant.

Another technique is that of geometric features exttacted by

local neighborhood operations in array processors. First proposed by

• Unger [27,281, the work has been extended by several by several other

researchers [29,3P). The major problem with this technique seems to be

'I÷
)m
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its lack of generality, although it has been shown to work for simple

geometric shapes (31], it has not been successfully applied to the re-

cognition of complex objects. The features are usual'y not invariant

with respect to size or rotation.

A class of feature e"tracticn techniques that aeems to be gaiii-

ing support at present are the various frequency donmain algorithms.

Among these are the impulse response filters [321, the discrete Fourier

transform, and the Walsh/Hadamard/Haar transforms. The impulse response

filters are often used in the analysis of aerial photographs and terrain

classification [33] to detect small areas of interest such as orchards,

oil tank farms, and railroad yards. The filters are simply a distribu-

tion of integer weights on a grid such that when the appropriate feature

(e.g., a straight line) is centered under the grid the sum of all weights 4
times their associated optical densities is above a threshold. The

discrete Fourier transform has given good results on a number of pattern

recognition problems [6]. The use of digital transform domains such lo,

as the Walsh-Hadamard and Hlaar has been proposed [34]. These techniques

generally suffer from the same lack of invariance as the other methods .I

discussed above, i.e., size and rotation, although Richard's technique

of using Fourier descriptors of the boundary curve of an image [7] is

both size and rotation invariant.

The last class of techniques is that of arbit.ary transformations.

These are transforms designed to be invariant with respect to transla-

tion, size change, and rotAtion. Circular auto-correlation and moment

iI
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invariants [35] are in this class. Moment invariants have been used

by Dudani [5] with excellent results. Circular auto-correlation was

developed during this research and will be described below.

H1 The final process in a pattern recognition system is classifi-

cation. Usually the unknown feature vector is compared against a listI1 of vectors for each class (authority files) and some metric for each

class, corresponding to the probability that the unknown vector belongs

to that class, is computed. The unknown vector is then assigned to

ii the class to which it nas the highest probability of belonging.

A probabilistic classifier of the Bayes type will theoretically

give the highest possible recognition accuracy on a given set of feature

vectors [36]. The drawback to the Bayes classifier is the need to know

the a priori probability density functions for the occurrence of a

vector and the occurrence of a vector given that it belongs to a speci-

fied class. These functions are seldom, if ever, known. The experi-

mental determination of such functions requires large sample sizes

usually not available ta the researcher. Without accurate probability

density functions the Bayes classif!.er may not perform as well as a

"non-probabilistic classifier [5].

"A simple piecewise-linear classifier is the nearest neighbor

classifier. Er. this method the i'nknown feature vector is assigned to

the claas to which it has the smallest Euclidian distance. It has been

shown that this technique will produce a recognition accuracy no worse

than one-half that of an optimal (Bayes) classifier f37].

MA=
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A more complex and non-linear classifier is the distance-weighted

k-nearest neighbor rule (5,37]. This technique assigns weights to the

k nearest neighbors from the authority file of the unknown vector. The

weights assigned to the k nearest neighbors are summed with respect to

class and the unknown vector assigned to the class with the highest

weight.

The vectors used in a classifier may be either normalized or

unnormalized. One method of normalization is to divide all vectors by

their length, so that only vector angles determine classification.

Another method is to subtract from each component of the vector that

component's mean and then divide by its standard deviation [33]. The

type of vector normalization used, if any, depends upon both the feature

extraction and classification algorithms.

2.2 System Description

The hardware used in this experiment will now be described.

The computer used to implement the recognition algorithms is the Ohio

State University Electrical Engineering Department's PDP-9. This par-

ticular machine configuration contains, in addition to the standard

peripherals, a Tektronix 611 bistable storage cathode ray tube display.

Connected to the PDP-9 is a closed circuit black and white television

camera. The interface (9] which connects the camera to the computer

contains a circuit to threshold the video input signal from the camera

to a binary output. The threshold level is adjustable and the binary

video signal is fed to a television monitor so that the operator may

MA
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ii adjust thc threshold level to compensate for changing light levels and

obtnin the desired image. The images obtained from this system are

360 x 240 bit binary arrays and are stored in the machine as 20 x 240

18-bit word arrays. The interface actually reads only about 180 bits

per scan line, which gives a distorted image when displayed on an array

with equal horizontal and vertical bit spacing. An aspect ratio cor-

rection routine is therefore employed 19] to approximately double the

number of bits hcrizontally, which results in an undistorted image.

2.3 Experimental Procedure

The procedure used to obtain a facial profile consisted of

seating the subject in front of a black backdrop facing perpendicular

to the optical axis of the television camera. The camera position was

adjusted so that the subject's profile filled the monitor screen. The

lighting, video threshold, and camera aperture were selected to obtain

a reasonable replica on the monitor. In this svstem, subjects' flesh

appeared white on the monitor and the hair ind background were black.

Appendix A contains samples of negatives of the facial profiles obtained.

Subjects 8 and 10 wore horn rimmed and black frame glasses, respectively,

and as can be seen from Appendix A, these glasses were thresholded as

black. Subjects 5 and 6 wore wire rimmed glasses, which are not visible

on the thresholeed image.

Once a satisfactory image was obtained on the monitor, the image

I was stored on a disk file and later transferred to DECtape. The idea

here wan to build a large file of facial images so that it would not be

• #
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necessary to have the subjects present every time an identification

system was to be tested. With this file of images, it was then possible

to divide it into two distinct sets, one for training the recognition

system and one for testing the recognition accuracy with unknown profiles.

It was the author's intention at the beginning of this work to

obtain one image per day for each of the ten subjects. It was felt

that this procedure would give a set of images with 'real' day to day

variations and thus be a reasenable data set upon which to base a pattern

recognition system. This dream was shattered by the practical problem

of scheduling computer time and matching personal schedules. In the

end, most of the images were obtained in two sittings of six images

each per subject, for a total of 120 images. This total data set may

be divided into two sets of 60 images, 6 images per subject. The first

60 images were obtained with changes in lighting, video threshold and

camera aperture settings, anO subject position in an attempt to intro-

duce variations in samples within a given class. The second set of 60

images was obtained with fixed lighting, video threshold, camera aperture,

and subject position in an attempt to reduce the sample variation to a

minimum,

2.4 Image Filtering

The pattern recognition system described in this thesis uses two

image filtering routines. The first is a 'prefilter' routine whose

purpose is to remove high frequency noise on the image boundary. This

noise is caused by several factors. First is the quantization noise
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rl inherent in any digitization process. Second is the noise generated

by the aspect ratio correction mentioned previously. Because the

number of horizontal bits is almost doubled, steps in the image boun-

dary two cells wide tend to occur. Third is the noise generated by

inherent instabilities in the video level and threshold circuits. The

IIvideo signal from the television camera is not: very stable and conse-

quently it is difficdlt to obtain a smooth boundary on the thresbolded

image for a light to dark transition in the viewed scene. This effect

is most apparent in the hairline drea of the facial profiles, as can be

seen from the pictures contained in Appendix A. The second filter is

-j. used to extract the front edge of the facial profile. This filter re-

jects the larger image variations caused by the highly variable hair-

line area described below.

f The prefilter is implemented with binary array processor sim-

ulation routines (39]. Briefly, the array processor structure of this

simulation is a synchronous two-dimensional array of storage cells.

Each cell contains one bit of a binary image. The next state of each

cell is a binary function of its present state and the states of the

eight "neighbor" cells adjoining it (the simulation routines use a rec-

tangular tessellation [40]). Threshold logic is used to implement the

binary function. The algorithm for the prefilter is to first set to zero

any cell whose eight neighbors are not all one, thus removing "noise"

cells. Then any cell that is zero and has at least one neighbor that

.5-
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is one on a Von Neumann neighborhood [41] is changed to one. Finally, I

any zero cell that has at least one neighbor that is one ov a Moore

neighborhood (41) is changed to one. The last two operations have the I
effect of smoothing the image boundary as well as filling one and two-

cell-wide gaps in the image. The boundary smoothing is particularly

useful in this aystem because the aspect ratio correction [9] required

by the television camera interface tends to generate two-cell-wide steps

in the input image.

The edge extraction filter is used to remove the back of the

facial profile. It was determined early in this work that the televi-

sion camera and threshold circuit used to obtain the binary images gave .

drastically different images in the hairline and chin-neck areas for

slight lighting changes. It was also felt that the hairline and collar

areas would be highly variable on a day to day basis. For these two

reasons it was decided to mask all but the front of the facial profile

and use only this edge for classification. The edge extraction is

accomplished by duplicating the input image, shifting the duplicated

image backwards, and then setting to zero all !mage cells covered by I

one cells of the duplicated array. The second array is then moved up I

and down with the image cells overlayed by the one cells of the second

array being set to zero after each move. The distance of all translations

is given by
d -K /A (2-1)

Ohere: d is the translation distance of the duplicated array

A is the total image area, i.e., the number of one cells
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1I K is a constant empirically determined.

This relation tends to make the routine size independent (i.e., the

same height-to-width ratio of the filtered image is maintained). This

i] is not a very accurate method of obtaining size independence, since

two images of a subject may have significantly different areas, due to

the input system flaw mentioned above (see Appendix A). The method

did, however, seem to be adequate for this system. This filter routine

is certainly not the only, or even best, method of obtaining this

function, since it leaves the forehead area dependent upon the hairline

(see Appendix B). It does have the advantages of being simple, fast,

translation and size invariant, and useable for any rotation angle.

The binary array processor simulation routines used in thiF pattern

recognition scheme could have been used to obtain an image edge simply

by setting to zero all cells with the proper neighborhood. For example,

to obtain the right edge of an image any cell whose righthand neighbor

is one should be set to zero. This method of edge extraction was not

used for two reasons. It was felt that the binary image transformations

would be less susceptible to noise if they were presented with a solid

image rather than a single-cell-wide edge. Also, this edge extraction

technique can only extract edges at 45* increments, which is undesirable

if the system is to be expanded to work with arbitrary image rotations.

2.5 Binary Image Transformations

This research uses two of the image transformation techniques

previously discussed, correlation and moments. Correlation was chosen
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mainly for its ease of computation and its ability to be made translation

and size invariant, and have predictable and easily computed variation

under rotation. Although correlation does not presently seem to be

a popular technique with researchers in the pattern recognition area,

it has been used by Horwitz and Shelton (42] on a simple character re-

cognition experiment with good results. Moment invariants were chosen

because of the excellent results Dudani [51 obtained on aircraft recog-

nition with this technique. It was felt that moments would provide a

reasonable benchmark to compare correlation against, as well as provide

information on how well this transformation performs on a different set

of binary images with an increased number of classes.

Consider then a finite, continuous, binary, two-dimensional

image, I, on some plane, P. For any point p in P, I is assigned the

value 4 or 1. Introducing a cartesian coordinate system in P with

coordinates (x,v) allows I to be written as a function of x and y:

f(x,y) - 0,1 for any real x,y - x < (2-2)
-- <y <

The plane is infinite in extent, but we will require I to be finite,

that is, for the image area defined as:

A- f t(x,y) dx dy (2-3)

(which is simply the number of one cells for a binary image), we require

A to be finite; A -.

The image may be digitized with a two-dimensional sampling function:
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f(•ry,ny) -f(x,y) S(x-my)6(y-ny) (2-4)

for m and n integers, -- < m < -

,, < n <

6(x) is the impulse function, defined as

S(x) - , x 0 - < x < cc (2-5)

6(x) - 0 , otherwise

ii and y is the sampling interval (a real constant). The effect of digi-

II tization is simply to add a quantization noise, n, to I and any function

of I:

11 n(xy,yy) - .(xy],[yy]) - f(xy,yy) (2-6)

where [x] is the greatest integer function.

The mean error is then given by:

S- f fn(x,y) dx, dv . (2-7)S-=o

The quantization noise is usually reduced to a tolerable value simply

jj' by setting y much smaller than the size of any portion of I that is of

interest. Rosenthal has shown [43] that any function of a digitized

image may be expressed as a continuous function of the continuous image

to within some quantization ertor. In the following discussion this

approach will be taken since it results in a somewhat simpler and, in.

the author's opinion, more elegant formulation. In the pattern recog-

nition work described in this thesis, the input system noise ard the

) --
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image variations within a given class are much larger than the quan- I
tization error, so no analysis of the quantization error was performed. .1

Consider the two-dimensional auto correlation of I:

g(u,v) = f(x,y) f(x+u, y•v) dx dy (2-8)

for u,v real. -< u < , < v <

Using the identities

u - /F acos 0 for 0,a real, 0 <0 <_ (2-9) 1
v - FAa sin 0 (2-10)

the autocorrelation function of I may be expressed in a size normalized

polar coordinate form: 1

AAg(a,o) = A^ (2-11) I1

1/2

The factors A:- and A are used to obtain size invariance of g(a,O).

The autocorrelation function is even in u and v, which translates into

periodicity in the polar coordinates with perioc. w. This may be demon-.

strated by setting:

as = a (2-12)

0' - 0 + w (2-13) 7

A'- f f(x,v) dx dy iA (2-14)

-m :
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u /A' cao'COS /A mcos(O+i) -/-A acos 0 -u (2-15)

q J v' -/A'a' cos 0- A a sin(04+) -- /Aa sin 0 -v (2-16)

~li so-• ,.

g(u'v') - f f(x,y) f(x+u', y+v') dx dy

" f ff(x,y) f(x-u, y-v) dx dy . (2-±7)

Now using the substitution,

4'* x Xu (2:18)

y1 my-u (2-9

dx' =dx, dy' - dy

H 7we have

g(u',v') - f f(x'+u, v'+v) f(x',y')dx' dy' - g(u,v) (2-20)

H therefore

g(atherforg(u',v') -! .. g(a,0) (2-21)A A

and thus g(a,o) is periodic in 0 with period Yr.

The autocorrelation function is also invariant under translation,

since with

x' x + a (2-22)

it

'*.1* ; * ..-c'-2" 4.A A A
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y y + h for a,b arbitrary real constants -a<a<-, -m<b<bo. (2-23) .1

Alm f f(x+a,y+b)dxdy (2-24) "

g'(u,v) - f f(.x.+a, y3+b) f(x+u+a, y+v+b) dx dy (2-25)

Changing the variables of integration to x' and y'

dx' dx dy' - dy

A' m f f f(x',y') dx' dy' m A (2-26)

g'(uv) f f(x',y') f(x'+u, y'+v) dx' dy' - g(u,v) (2-27)
3.7

Illy -a

and then also

g'(do) - g(cG) . (2-28) 1
The size normalized polar form of the autocorrelation function "

is invariant under image size change. To show this, let,

x- ax for a an arbitrary real constant (2-29)

y- ay (the magnification) 0 < a < a (2-30)

A' - f f f(ax, ay) dx dy (2-31)

g'(u',v') -f f f(axay) f[a(x+u)a(:;v)] dx dy (2-32)

-i
.!
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Changing the variables of integration to x' and y'

ifdx' -adx dy' ady

2, 2
A' f f f(x',y') a dx'dy - a A (2-33)

g'(',v') f f(x',y') f(x'+au, y'+av) a2dx'dy'

2
- a g(au, av) (2-34)

and
u' F K' a cos 0 - /a 2A a cos 0 - aF a cos 0 - au (2-35)

-1 v' - /' a sin 0 av (2-36)

:!H __so

- g'(u',v') a 2 g(u',v')S(aO g(,) (2-37)
A' a2 A

The size normalized polar form of the autocorrelation function

Sis not invariant under image rotation, but it does change by only a

F1 H phase factor equal to the image rotation angle. This can be seen using

the identities:

x - x cos * - y sin * for rotation angle * (2-38)

y -x sin + y cosO 0 < 2w (2-39)

A' f f(x cos * - ysin *, xsin (p + ycos *) dx dy (2-40)

Li
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g'(u',v') -f f f(xcopt -ysrin *~xsin *+ ycos *

(2-43.) ~

Changing the variables of integration to x' and y'

ay5

RI siin a, coos

-OS ,~cs -viO si*- cs 243

-~~~~~o +X co(+)-Ia(o~o*sinsi)I

inu ý ,cos$ viý(-5

Z ' f fK a f(x0+4 ) - x dy' A (2-42)+ osco~

inuin +cosý-sn ui#vo (2-46)

and ifwe leI,'+f 2-4
-' VA a o-Aa(o~cs sns
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I R(u' iV')so g= (, 0 + *). (2-4,7)
A

The function g(a,0) may be used to transform a biviniv image into

an MN-dimensional vector by setting:

S- am with am a real constant (2-48)

mi,nM,N integers

in- < m < M (2-49)

N <

For lack of a more inspired neme thi-3 transformation is referred to as

the circular autocorrelation function. The MN terms of this function

are, as shown above, independent of translation and size changes of the

input image, I (within, of course, quantization error for 3 diserete

computation). Under an image rotation of w/N radians, the terms are

related by

l (m,N) (2-50)

g'(m,n) g ,(m,n-&) , n > 1 (2-51)

and similarly for other increments of 7/N. It can be seen that for

rotation angles other than itn/N there will be another quantization

error introduced, and thus N must he chosen large enough to make this

error nagligihle for the particular application. This relation between

image rotation and the circular autocorrelation term eequen%e allows the

image augle to be determined to within w/N radians (+ a w radian

ambiguity because of g(a,O)'s periodicity in 0 of r'). The penalty for

this feature is an increased classification time over a rotation in-

variant transformation because of the 5 searches of tne authority files

: x

wit.
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required. The ability to determine image rotation angle, however, may .1
be worth the time trade-off in many applications. Practically, the

circular autocorrelation function is computed simply by duplicating

the input image, shifting the duplicated image a distance FA a at "

angle 0 and counting the number of intersectInri one cells.

The moment transformation is based upon a set of two-dimensional "1

fomeatt functions derived by Hu (35], which are invariant with respect to -

image translation, size, and rotation. The two-dimensional moments are 1

defined by:

a rq
mpq I f('rmyn) mPn (2-52)I ~m~-o- nm-a

M f(ym,yn) p,q - 0,1,2,... (2-53)
mm-=n n,-a

w,1here: m is the (p-Lq) order momentIPq

f(ym,yn) is the digitized image. ii
The centroid of the image is then given by: i

"-10 M f(ym,vn)m (2-54)

S-(

where (m,n) are the coordinates of the centroid of f(ym,yn),

.1

The centr~l moments are defined by: •

nfrn0  -, m yn) (m-) Py(n-.)n q (2-56) "

me-, .I n.m-

The entr1 moentsare efind by
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The central moments may also be expressed as sums of the ordinary

moments [51; the expressions for the first three orders are:LI
Poo o 'on (2-57)

""1 1 p 1 0  0 (2-58)

2
U 2 0 ' m2O - )MlO (2-59)

2

""2 " 021 -( mOl) (2-60)

3

K 30P Min3 - 3m2 0m 1 + 2(m 0 ) (2-61)
2V 21 m 21 -m 20 m0 1 - 2m1 1 , 1 0 + 2 (mwo) in0 1  (2-62)

2

U1 m1]2 - m 02ffll - 2m11m01 + 2(mol) in1 0  .2-63)

3

U 01 3 1L03 - 3'n02'01 + (m0 1, (2-64)

I The moment invariants used in this research are:

I 2 2
(6+ - )+4p 2 (2-65)

2 [020 U02)

r2M 3 r6 11U0-3 2 + (3V21 V03) 2 2-6
2 

2
14' l (((2-67)

'4 6 _ (U3 0 + P 1 2 ) + (U2 1 + V0 3 ) ]
r
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2 2 -'M -t {(11 - 3p1)2(P30 + (2 (12130 + U123) + 3(i21 + 031

2 2
+ (3121 -103 ) (021 + V 03 )(30 30 + 1121) - (U121 + 110)3 (2-68) [

+ 411 1(P30 12M 1103) (2-69)

- (31 2 2

- 30 3P12)(P 21 + 103)[3(030 + 112) - (021 + U03) ] (2-70)

1/2
r = (20+1102) . (2-01)

It can be shown [5,351 that functions M- M are invariant under image

translation, size change, and rotation. By computing M - on both I
the imagp, ii.!houttte and boundary a twelve-dimensional feature vector

may be obtained [51] .

2.6 Classification Algorithms .1
Two classification algoritims were investigated in this work, the

nearest neighbor rule and the distance-weightoe L-nearest neighbor rule.

The nearest neighbor classifier todputez tha Euctidien distance between

the unknown vector and evexr vector in the authority files. The unknown

vector is assigned to the class which contains the vector closest to the

unknown. This nay be written as:

44

y
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n pq2 1/2
e( (2-72)pq k., K k

where: r is the k-th element of the unknown feature vector, R,
k of dimension n.

sk is the k-th element of the p-th vector S in the authority2 file for class q.

Ie is the 'error' (Euclidian distance) between points R and S.Pq

jj Then for Q authority files (and hence Q classes) each containing p

vectors (depth P), there is some smallest e
Pq

e < e forallpq IpfP (2-73)
mn pq

1 < q <Q

and R is assigned to class n.

SThe nearest neighbor rule is a simple piecewise linear classifier;

that is, the class boundaries, or decision surfaces are defined by seg-i!
ments of hyperplanes. For example, in a two class problem with two author-

ity vectors per class, in two dimensions, the decision surface defined

by the nearest neighbor rule is shown in Figure 2.2. An unknown vector

1 in the space t the left of the decision surface would be assigned to

class 1 by the nearest neighbor rule, while an unknown vector in the

space to the right of the decision surface would be assigned to class 2.

F. •Piecewise linear techniques such as the nearest neighbor rule can be

combined wizh logical rules to construct quite complex boundaries (441,

but only the simple nearest neighbor rule was used in this research.
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!1 H The distance-weighted k-nearest neighbor classifier assigns

* ,an unknown vector, R, to the class most heavily represented among its

k nearest neighbors in the authority files. The 'representation' is

j computed as the sum of weights assigned to the k vectors. The weights,

in turn, depend inversely upon the distance between the unknown and

authority vectors. Using the no~tation defined above we may write:

w "f(e ) (2-74)

I pq pq

where wpq is the weight assigned to the p-th vector in the

authority file of class q.

SThe actual weight function depends upon the type of feature vector used,

and will in turn affect the decision surface shape. f(e ) is usually
pq

I defined such that:

"lim w -lim f(e)- 1 (2-75)
e 4+0 pq e -"o p
pq pq

lim w elm f(e pq) 0 . (2-76)
e Ot pq e p

pq pq

The class weights, W•, are then determined by:

P

wm w *(2-77)•q pl pq

w is computed only for the k nearest neighbors of the unkno-wn vector
7 pq

R, with all other w set to zero. k may be a fixed number, in which
pq

IC



36

case the lowest k epq are selected to compute wpq, or k may be variable I I

and depend on the number of error terms below some limit:

V pq 0 if epq > e M1a p <.P; 1 <q Q. (2-78)

In any case, there will exist a largest W
q

W > W for all q . 1 q Q (2-79)
n-- q

and R is assigned to class n. The decision surface defined by the

distance-weighted k-nearest neighbor rule is decidedly non-linear.

& L
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CHAPTER III

L FACIAL RECOGNITION AND AUTOMATIC TRAINING

3.1 Facial Profile Recognition

Once a training algorithm to select the vectors for the

authority files has been devised and verified and the various system

parameters optimized, the pattern recognition system is complete and

the testing of its ability to recognize facial profiles may begin.

Five experiments were conducted. The procedure in each was to divide

the 120 facial profiles into two distinct sets, a training set and a

test set. The activity sort training rule (to be described later in

this chapter) was used to select vectors from the training set for the

authority files. The recognition accuracy of the system was then

tested with both the trainin, and test sets. The recognition accuracy

obtained on the test set is, of course, the only valid measure of the

system's performance, since the test set consists solely of images

that are unknown to the computer. The recognition accuracy on the

training aet, some of whose image feature vectors will be stored in

the authority files, was included simply as a benchmark. In the

remainder of this thesis whenever recognition accuracy is mentioned,

the recognition accuracy on the independent test set is meant

"* unless otherwise specified.

37
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In experiments 1 - 4 training with the activity sort rule

was terminated after 250 random selections from the training set had

been made. in experiment 5, 500 selections were used because of the

larger training set size. This was deemed a sufficient number of

inputs to achieve maximum recognition accuracy based on the training

times obtained in the tests of the activity sort training rule de-

scribed in Section 3.4.

In experiment 1, samples 1-6 of the facial profile images in

each class were used as the training set, while samples 7-12 of the

facial profile images in each claps were used as the test set. In

experiment 2, this was reversed with samples 7-12 used as the training

set and samples 1-6 as the test set. The results of these two experi-

ments are shown in Tables 3.1 and 3.2, respectively. Note that the

recognition accuracy on the test set is considerably higher in the

first experiment. This is most likely due to the variations intro-

duced in samples 1-6 of the facial profile images by changes in

lighting, camera aperture, and subject position as described in Section

2.3. When used as a training set these images seem to provide author-

ity files that better define the region in the feature vector space

in which each class falls (i.e., a better decision surface) than do

samples 7-12, where variations from image to image were held as small

as possible.

fl
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Authority Recognition Accuracy
File Training set Test set

Depth No. Correct % Correct No. Correct % Correct

11 1 34 56.7 27 45.0

2 48 80.0 34 56.7

3 57 95.0 46 76.7

4 59 98.3 43 71.7

5 60 100 41 68.3

6 6n i00 41 68.3

Training Set -- Samples 1,2,3,4,5,6
Test Set - Samples 7,8,9,10,11,12

Table 3.1 Facial Profile Recognition Experiment 1 Results

Authority Reco&n_.tion Accuracy
File Training set Test set

Depth f No. Correct 1 Correct No. Correct C Correct

1 53 88.3 26 43.3

2 59 98.3 32 53.3

3 60 100 26 43.3

4 60 100 26 43.3

5 60 inn 26 43.3

6 60 100 26 43.3

Training Set - Samples 7,8,9,10,11,12
Test Set - Samples 1,2,3,4,5,6

Table 3.2 Facial Profile Recognition E.xperiment 2 Results
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Experiments 3 and 4 (Tables 3.3 and 3.4, respectively) used

random selections of 6 images per class in the training set and the -

remaining images in the test set. Maximum recognition accuracies on

the test set were better than those obtained in experiment 1. Experi-

ment 5 used a random selection of 9 images per class in the training

set and the remaining images in the test set. The resulta, in Table

3.5, show the highest recognition accuracy achieved on any test set. "

This seems to indicate that if the activity sort rule is presented

with a large training set, it can determire the decision surfaces

(authority file vectors) to provide better recognition accuracy on

independent data than if it is presented with a smaller training set. "

"Seems" is used in the preceding sentence because the small size of

the test set makes generalizing the results very risky, but the

preceding statement does agree with the expected outcome from proba-

bility theory. As more samples of the classes are obtained, the sample

distribution becomes better defined and the decision surfaces can

therefore be adjusted (i.e., authority file vectors picked) to provide i
better separation between classes and hence better recognition accuracy.

Notice that in all cases the maximum recognition accuracy on

the test set does not occur at maximum authority file depth, as might

be expected. Plots of recognition accuracy vs. authority file depth

are given in Figure 3.1. The maximum recognition accuracy seems to

occur at about one-half the maximum depth. The reason for this be-

havior is not clear--the small sample size makes any generalization

difficult.
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Authority Recognition Accuracy
File TraininA Set Test Set

Depth No. Correct 2 Correct No. Correct % Correct
LI

1 29 48.3 21 35.0II
2 51 85.0 48 80.0

3 54 90.0 46 76.7

4 59 98.3 43 71.7
5 58 96.7 44 73.3 1

6 60 100 46 76.7

Training Set - Random selection 1,6 samples per class
LI Test Set - Remaining 60 images, 6 per class

Table 3.3 Facial Profile Recognition Experiment 3 Results

Authority Recognition A'.,curacy
LI File Training Set Test Set

Depth No. Correct % Correct No. Correct % Correct

1 34 56.7 28 46.7

2 53 88.3 38 63.3

3 57 95.0 43 71.7

4 59 98.3 47 78.3
I5 60 100 45 75.0

6 60 100 45 75.0

Training Set - Random selection 2, 6 samples per class

Test Set - Remaining 60 images, 6 per class

Table 3.4 Facial Profile Recognition Experim-ent, 4 Kezults
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Authority Reco nition Accuracy
File Trainin Set Test Set _____

Depth No. Correct % Correct No. Correct % Correct I

1 62 68.9 21 70.0

2 73 81.1 22 73.3 1
3 84 93.3 25 83.3

4 83 92.2 27 90.0

5 89 98.9 23 76.7

6 88 97.8 22 73.3

7 88 97.8 25 83.3 1
8 90 100 23 76.7

9 90 100 26 86.7 j

Training Set - Random selection 2, 9 samples per class
Test Set - Remaining 30 images, 3 per class )1

Table 3.5 Facial Profile Recognition Experiment 5 Results i:

14

I I
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.1 It was initially felt that the results discussed above did

not have sufficiently high recognition accuracy, and because of the

excellent recognition accuracy obtained by Dudani with a moment in-

variants feature extractor, it wss decided to replace the circular

autocorrelation function with moment invariant functions. The six

moment invariant functions given in Section 2.5 were used twice, once

on the image boundary and once on the silhouette, to obtain a

12-dimensional feature vector. The classification algorithm was

modified to use the weight function and the feature vector normaliza-

tion used by Dudani's aircraft recognition classifier. The last

three facial profile recognition experiments were then repeated with

no other changes Typical feature vectors are given in Table 3.6.

The results are given in Tables 3.7 - 3.9. The low recogni-

tion accuracies on the test sets were totally unexpected. Recognition

accuracies were, in all but one case, lower than those obtained using

circular autocorrelation. There mav be two reasons for this result.

The class-to-class shape variations are often more subtle for facial

profiles than for aircraft silhouettes, and due to the idiosvncracies

of the television camera used for input to the computer, facial pro-

files exhibited more variation ftum sdmple to sample within a given

class than the aircraft images. Under these conditions circular

autocorrelation seemed to provide feature vectors with better separa-

bility between classes than the moment invariants did.

.S . . .4-4 ' ..- .----
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Table 3.6 Typical Moment Invariant Feature Vectors

Feature Vector
Cls

Cas 1 2 3 4 5 6

1 .556 .555x10'l .186x10'l -.577x10-3  .984x10-2  _.159X10-3

2 .622 .818x1' .339x103  .148x1 5  -.267x103  .100x105 .
3 .468 .758 .220 .624x10'l -.113 -.647xltf'

4 .672 .137 .701x10 2 -.384x10-4  -.171x10 2  .214x10-3

5 .641 .629x10'l .800x101l .151x]0O2  .638x10-1  .547x10-2

6 .618 .129 .296x10 1-151x102  .932x1 2 -.103x102

7 .519 .595x101l .133x10'- .124x10-3  -.194x10-2 ,.350xl10 3

8 .505 .477 .190 .540xlcf1  -.326x10'l -.128xO10

9 .635 .132 .420x10- _.937xl10 -.125x133  .299x10-5

10 .548 .162 .256x10' .150x10-2  .124x10'l .678x10-3

1 .707 .876x10 1l .765x10-2  .289x10-4  .342x10-2  -. 196x10-3

2 .780 .102 .291x101l .146x10-2  .128x1(F1  .625x10-3

3 .718 .401 .218 .285x1 1  .182 .582xlr 1

4 .762 .219 .368xl0 1 141f .217x10 .306x102

5 .730 .107 .197xl101  .735xlnF3  .568xl10 2 -.542xl10 3

16 .772 .157 .489x1T1I .429x,0-2  .319x101l .128xl10 3

I7 .721 .422x1(f1  .282x102 -.124x1~o -.180xin-2 -.283x,0-4

I8 .645 .392 .675x10- .949x10-2  .480xl101 -242x10-2

9 .766 .163 .274xl101  .954x103  -988xl0 - 157xlOf

[ 0 .737 .646x10'l .835x10-2 -14xC4 -. -313 .193x)03
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if Table 3.7 Moment Invariants Recognition Experiment 1 Results

Authorltv Recognition Accuracy
File Training Set Test Set

Depth No. Correct % Correct No. Correct % Correct

1 33 55.0 22 36.7

2 40 66.7 23 38.3
3 47 78.3 36 60.0

4 56 93.3 29 48.3

6 60 1o0 29 48.3

6 60 100 32 53.3

Training Set - Random selection 1, 6 samples per class[Test Set - Remaining 60 images, 6 per class

Li Table 3.8 Moment Invariants Recognition Experiment 2 Results

[ Authority Recognition Accuracy
File Training Set Test Set

Depth No. Correct % Correct No. Correct % Correct

1 37 61.7 25 41.7

7 46 76.7 30 50.0

3 56 93.3 26 43.3

4 58 96.7 33 55.0

i 5 60 100 27 45.0

6 60 100 31 51.7

Tralning Set - Random selection 2, 6 samples per class
Test Set - Remaining 60 images, 6 per class

Lg

i

i.. - - I.. . .
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Authority Recognition Accuracy
File TrainIng Set Test Set

Depth No. Correct % Correct No. Correct % Correct

1 36 40.0 10 33.3

2 56 62.2 14 46.7

3 68 75.6 16 53.3

4 74 82.2 15 50.0

5 82 91.1 21 70.0

6 87 96.7 19 63.3

7 90 100 19 63.3

8 90 100 17 56.7

9 90 100 19 63.3

Training Set - Random Selection 2, 9 samples per class
Test Set - Remaining 30 images, 3 per class

Table 3.9 Moment Invariants Recognition Experiment 3 Results
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fiIn order to determine whether the results of the above experi-

ments were acceptable, it was decided to compare the recognition

II accuracy of computer facial profile recognition against that of humans

presented with the same data. Since humans are generally regarded as

good pattern recognizers, it was felt that if the machine performed

comparably to a human the pattern recognition system would be acceptable.

Accordingly, the following experiment was devised. A facial profile

H photograph of each of the ten subjects was taken. These photographs

became the human recognizer's "authority file." Three people were

chosen for this experiment, the first two technically oriented and

close to this work, the third non-technically oriented and unfamiliar

with this work. Each person was given the set of reference photographs

and seated in front of the Tektronix 611 display. The facial profiles

after edge extraction, as presented in Appendix B, were selected at

random and displayed on the CRT one at a time. The recognizer was

H gTiven as long as he wished to make a classification by comparing the

CRT image against the photographs. All 120 facial profiles were used,

but because of limited disk storage samples 1-6 (on all classes) were

presented first, and then samples 7-12.

"* - The recognition accuracies of the three human recognizers are

given in Table 3.10. It can be seen that the recognition accuracy on

samples 7-12 is higher than the recognition accuracy on samples 1-6.

There are two possible reasons for th' ; the recognizers may have had

some difficulty in correlatine the CRT images to the reference photographs,

i.e., some early misclassifications were due to learning, and the larger
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sample-to-sample variation within a given class for samples 1-6 may have

reduced the human recognizers' accuracy. In any case, comparing these

results with the computer results, it can be seen that using circular

autocorrelation the computer at least matched the human recognition accu- I1

racy in all but experiment 2, while the results of experiment 5 indicate

that with a sufficiently large training set it is possible for a computer I
pattern recognition system to achieve significantly higher recognition

accuracy than a human on this problem. The best recognition accuracy .1
obtained with moment invariants (70%) is comparable to human recognition.-'

accuracy on the 120 images (68-71%), a result similar to, although not

quite as good as, that obtained by Dudani on aircraft recognition [5].1

i

R ecognition Accuracy "
Subject Samples 1-6 Samples 7-12 Samples 1-12

No. Cct Z Co rrect No. Correct,'% Correct No. Correct 1  Correct

1 39 65.0 46 76.7 85 70.8

2 38 63.3 44 73.3 82 68.3

338 63.3 46 76.7 84 70.0

Table 3.10 Human Facial Profile Recognition Accuracy

-i
-W
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HI 3.2 Automatic Training

In the following chapter, the selection and parameter optimiza-

-A tion of two deterministic feature vector classification schemes will be

discussed, while in this chapter the problem of building the authority

file for the classifier will be addressed. It is the authority files'

i jcontents and depth (number of vectors) that determines the decision

surfacen. If the feature vectors are well defined, or a sufficiently

large sample size exists, the authority file vectors and depth for

Hi optimal recognition accuracy may be determined by computation (indeed,

the authority file concept is not even necessary; one may write a

set of equations describing the decision surfaces). However, outside

of a theoretical analysis, this is seldom the case. The problem then

is how, with the data available, are the authority files to be generated?

The construction of the authority file is referred to as training.

Duda and Fossom [441 have described an algorithm that computes an

it authority file vector for linearly separable data, i.e., the classes

in the feature vector space may be separated by hyperplanes. Feature

vectors generated by present feature extractors, however, tend not to

fall in such neat classes, and in general a fairly convolved decision

surface is required to separate the classes. Such a convolved decision

surface may be obtained by using authority file depths greater than

one. The authority files may be filled with vectors selected from

some training set, i.e., feature vectors generated from a typical set

of images to be recognized. The selecticn criterion is to obtain the

!
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set of vectors that give the greatest recognition accuracy. The feature

vectors selected to fill the authority files then determine the decision 1
surfaces.

For a practical pattern recognition system operating in a chang-

ing environment, some sort of adaptive decision surface is desirable.

This suggests a classification routine that is able to adjust its

authority files to obtain a more nearly optPium set of decision surfaces.

Such a routine should also be able to add new classes if necessary.

Each classification attempt then, by such a pattern recognition system,

would have the potential of changing the authority files (and hence

decision surfaces) to adjust to new data. Two algorithms to provide

this automatic training are discussed in the next section.

3.3 Two Training Algorithms

Consider a classifier of the nearest neighbor or distance

weighted k-nearest neighbor type with authority files of depth n.

A random feature vector is applied to the classifier and a classifi-

cation made. If the classification is correct, the closest (Euclidian

distance) vector in the authority files to the unknown vector that is

also in the same class as the unknown vector is moved to the top of

its authority file. If taie classification is not correct, the unknown

vector is 'pushed' on top of the appropriate authority file. All other

vectors in this file are pushed down, and if the file is full, the

bottom vector will be lost.
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Under these rules the most 'important' vectors, i.e., those

used most often in identification and that define 'critical' areas

I of the decision surfaces, will 'bubble' to the top of the authority

files, while the vectors seldom used in identification will 'sink' to

the bottom of the file. When a vector is incorrectly classified, its

insertion into the authority file redefines the decision surface so

that the misclassification will not occur again. If the authority file

is full, it is the least used vector that will he lost when a new

vector is added because of the bubble action described above.

A variation on this technique is to associate a counter with

-i each vector in the authority files. Again, a random feature vector is

applied to the classifier and a classification made. If the classifi-4i

,! cation is correct, the closest feature vector in the authority files

to the unknown vector that is also in the same class as the unknown

vector has its counter incremented. If the classification is not

". " I correct, the vector in the appropriate authority file with the lowest

number in its counter is replaced by the unknown vector and the counter

is reset.

The effect of this rule is similar to that of the bubble sort

' Jrule described above. Authority file vectors with the highest 'activity,'

I i.e., those used most often in classification, are retained, while

seldom used vectors are removed so that a new, and nerhaps more impor-

I tant vector may be added. These two authoritv file sorting rules do

require a 'teacher,' since the classification cf the 'unknown' vector

rAi
I



541
-~ j

must be kno'rn to be correct or not, and if incorrect the class of the

'unknown' vector must be know so that the correct authority file may

be modified. These requirements are not restrictive if these rules

are used when the authority files are first filled from a training set,

but if the authority files are to be modified when the pattern recog-

nition system is operating, some sort of feedback as to the correctness :1
of the classification must be provided. The first application, that

of initial training, is investigated in the following sections, while

the second application of these sorting rules, that of decision sur-

face modification during operation, is left for future research.

3.4 An Experimental Comparison

A simple experiment was performed to verify the expected

performance of the two authority file sorting rules. The circular

autocorrelation feature extractor and the dit, nce-weighted k-nearest

neighbor classifier were used. Authority file depth was set to three.

The training and testing set was samples 1-6 of the facial profile

images for each of the ten classes. In the first test, the authority

files' contents were adjusted manually by cut-and-try method to obtain

the best possible recognition accuracy. Next the bubble sort tech-

nique was run for 500 random selections from the training set and then

tested. Then tih aCL'vity sort rule was run for 500 random selections

and tested. The results are shown in Table 3.11. The samples to train

column indicates the point (in number of random inputs) after which the

authority files began to 'oscillate.' Since some authority files were



SI55

not deep enough to hold all tho vectors necessary for 100% recognition

accuracy on that class, the lower importance vectors would swap or

oscillate In and out of the files. At this point, ro furthz- increase

in recognition accuracy could be obtained.

Authority Samples Recognition Accuracy

eat Sort File to No. Correct % Correct No. classes
No. Type De-'th Train _100% correct

1 manual 3 4q 81.7 7

2 bubble 3 111 48 80.0 6

3 activity 3 ill 52 86.7 6
i] 4 activitv 4 179 5q 93.3 9

5 activity 2 181 43 71.7 3

Table 3.11 Sort Algorithm Recognition Accuracies

From Table 3.11 it can be seen that the manual and bubble sort

produced about the same recognition accuracy, while that of the acti-

1] vity sort was slightly higher. One reason that the activity sort per-

formed better than the bubble sort may be because of the inherent

integration provided by the activity sort counter. Consider, for

example, an authority file which contains a vector that is often used

(i.e., is the closest to the input vector) in classification. Suppose

now an input sequence occurs in which the other vectors in the authority

file are used and hence bubble to the top of the file, or several

misclassified vectors are inserted into the file. If this occurs the

! x-x1



56

important (often used) vector may end up at the bottom of the authority

file and be pushed out by the next vector inserted. Sinc, the input -!

sequence is random, such a sequence is most likely to occur for small

file depths. With the activity sort an often used vector will build

up a count significantly larger than less important vectors, and an

input sequence that did not use this vector would have to be long

enougih to build up the ccunts of the other feature vectors to values

greater than that of the 'important' vector before it would be replaced.

Since a longer input secuence of this type is required, it is less

likely to occur and the activity sort files remain more stable.

The automatic training rules were not able to match the manual

selection of feature vectors for the number of clasises 100% correct,

which is not surprising since the automatic routii~es were designed to

optimize the total recognition accuracy without regard to class.

Table 3.12 shows the recognition accuracy of the three methods for each

class. Included in Tables 3.11 and 3.12 are two training attempts with

the activity sort rule for authority fi!k depths of 2 and 4. The

recognition accuracy behaved as expected, lower for a depth of 2 and

higher for a depth of 4. Notice that the number of innuts required to

train the authority files increases for depths of 2 and 4. For a file

depth of 2 or 4 and a random input selection with a uniform probabi-

lity density function, an average of 3 passes through the input set

is required before the activity file contents start to oscillate.
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Test Recognition Accuracy, Z Correct/Class
No. -_""

]!1 2 3 4 5 6 7 8 9 10

1 50 100 100 100 100 50 1.7 100 100 100

2 50 100 100 83 100 67 0 100 100 100

I- 3 50 100 100 83 100 50 83 100 100 100

4 83 100 100 100 100 100 100 100 100 100

. 5 33 83 100 83 67 50 50 100 50 100

Table 3.12. Sort Algorithm Recognition Accuracies per Class

The activity sort rule hai a feature which may be useful if it

is to be used to maintain the authority files in an operating pattern

recognition system. It can be seen that under such conditions the

4 i counts associated with some vectors may become very large. The activity

- sort rule may he modi.f ied to divide the contents of all counters for a

given authority file by a constant when any count in that file exceeds

"a preset value. This technique tends to give t:he authority files a

certain 'forgetfulness.' Any authority file vector that is not the

closest vector to the unknown (i.e., that does not have its counter

£ ._incremented) a certain number of times for some nuober of classifica-

"tions (depending on the values of the constants) will hav- its count

reduced to zero by the divisions and will he t:'ased when a new vector

is entered. Because of its high recognition accuracy and the potential

for implementing this limited memory time feature, the activity sort

rule was chosen to fill the authority files in the remaining work.

---
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3.5 A Large Sample Size Experiment

I, Although the activity sort automatic training algorithm seemed "j

to perform well in the experiments described in the preceding section,

I there were two malor flaws in these experiments. The input sample 'iize

was really too small to determine conclusively how well the training

algorithms worked, and the test samples were the same as the training .

samples rather than independent data. It was decided to undertake an "I

experiment using the data and pattern recognition routines of Dudani4[

[5], with the activity sort rule for authority file construction, to

obtain a more meaningful measure of the algorithm's performance.

Dudani addressed the problem of automatic aircraft identification.

He defined a six-class problem and used a moment invariant feature ex-

tractor. The six authority files consisted of 551 12-tuples each.

The authority files were obtained from images of the aircraft at roll 1

angles from 0 to 900 and azimuth angles from -70 to 70%, both in

I 5-degree increments. The total number of vectors in the authority files

was thus 3306. , distance-weighted k-nearest neighbor classifier was

used. Oudani's test set consisted of 132 images obtained independently

and in addition to the 3306 images used in the authority files. Of the

132 test images, 22 images were from each of the six classes, with random

roll and elevation angles. The performance of the original system is
shown on the first line of Table 3.13. The last column lists the image

numbers from the test set that were incorrectly classified.

I
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Authority Traininq Recognition Accuracy Incorrectly Classified
/ File Depth Samples No. Correct % Correct Test Image Numbers

iJ551 --- 126 95.4 4,23,31,83,125,130

184 3000 116 87.9 4,5,16,18,23,31,41,
61,62,118,122,125,
128,129,130,131

184 6000 121 91.7 16,23,31,64,75,90,
125,127,128,130,131

Table 3.13 Activity Sort Rule on a Large Training Set

4 I

To test the activity sort training rule, the authority file

depths of Dudani's classifier were arbitrarily reduced to one-third

of their original size, from 551 to 184. Tra activity sort rule was

used to pick the new authority file contents from the training set

consisting of the 3306 vectors which comprised the original authority

files. After 3000 random samples from the training set had been examined

by the training algorithm, the recognition accuracy was tested with

Dudani's 132 independent test images. The training then continued for

another 3000 random samples from the training set and the recognition

accuracy was again tested with the 132 test images. The results are

shown above in Table 3M23. It can be seen that after 6000 samples the

recognition accuracy was approaching that obtained with the 551-deep

authority files (92% versus 95%). It is interesting to note chat test

image numbers 23, 31, 125, and 130 are missed in all cases; this might

I.

-.*
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indicate the presence of inaccurate training or test data. In Table 1]
3.14 the number of vectors in each authority file and the number of 1
samples in each class presented to the training algorithm during

training is given at 250-sample increments. It can be seen that the ii
number of samples of each class presented to the training algorithm

-i

remained fairly equal. The number of vectors in the authority files I

versus the total number of input samples during training are graphed

in Figure 3.2. The authority files seem to have filled at a logarith-

mic rate. Note that the authority files were not full when the experi-

ment was terminated and that the number of vectors in each file varies

considerably from class to class.

The experiment was terminated after 6000 training samples

because of the computation time involved (60 hours on the PDP-9 -

computer). It would have been desirable to continue until the author-

ity files were full, or to reduce the depth of the authority files

(to, say, 50) to determine exactly which vectors would be saved and

the recognition accuracy then achieved. This experiment does show,

however, that the vectors selected by the activity sort rule will i

provide good recognition accuracv wheit tested on an independent test set. I

t i
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CHAPTER IV

SYSTEM OPTIMIZATION

4.1 Introduction I
This chapter concerns itself with the optimization of the

circular autocorrelation feature extractor, a comparison of the

nearest neighbor classifier and the distance-weighted k-nearest

neighbor classifier, and the need for normalization of the feature

vector. A demonstration of the translation and size invariance of

the circular autocorrelation function is provided. The behavior "

of the circular autocorrelation function under rotation is also

demonstrated. The circular autocorrelation fupction performance

for various values of parameters am, M, and N is investigated.

The 120 facial profile feature vectors generated with the chosen

am, M, and N parameters are listed.

Two distance-weighted k-nearest neighbor classifier weight

functions are described, one dependent upon the Euclidian distance

between the unknown feature vector and the authority file vector,
epq, and the other dependent upon (epq2. Recognition accuracy of a

classifier using each function is obtained. The recognition accuracy

of a nearest neighbor classifier is compared to that of a distance

-weighted k-nearest neighbor classifier. Normalization of the feature

vectors before classification is discussed, and the mean and standard

66
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* deviation of the 12 circular autocorrelation feature vector components

over the 120 facial profile samples are computed.

Although the feature extractor and classifier are discussed in

separate sections, the development and optimization of both occurred

simultaneouslv. It should also be pointed out here that the two al-

I gorithms interact to some extent, making optimization a very difficult

task.

4.2 Circular Autocorrelation

After the circular autocorrelation function feature extractor

was written, it was felt that an experimental demonstration of size

invariance and behavior under image rotation was in order. It was

I decided to arbitrarily set the circular autocorrelation parameters at:

N - 12

am - 1/2

so that
o tFA cos( 7r(n-1) (4-1)

2 12

v A sin(__ (4-2)
2 12

The area A was computed as:

A - • f(my,ny) (4-3)
ino- nn-m
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that is, the sum of the one cells. The actual g(l,n) output was 1
multiplied by 100 and truncated. It was felt that this would be 1
sufficiently accurate and allowed integer arithmetic to be used in

the classifier. This may be written as: .1
g(l,n)- 1 -- g(u,v)] (4-4)

A .
A simple experiment was performed to verify the theory and .1

also to obtain an Idea of the amount of feature vector variation to

be expected for real images. A white rectangle 9" x 12" was placed

in front of the television camera and the feature vector for various

rotation angles waa computed. The results are shown in Table 4.1 as

samples number 1-17. The numbers in the area column are the total i

number of one cells in each array. The feature vector of sample

number 1 was used as the authority file vector. Since a rotation of

the Input image by wIN radians (in this case r/12 radians or 150)

causes the circular autocorrelation feature vector components to

rotate (see Section 2.5 and Eqs. 2-50 and 2-51); each unknown feature

vector must be compared against the 12 possible variations of the

authority file vector to find the best match. The numbers in the

closest match, angle, and error 2 columns refer to the n/12 radian

rotation (angle) for which the smallest Euclidian distance squared

(error 2) between the unknown and sample number 1 was obtained.

Because of the rectangle's symmetry, the circular autocorrelation

function feature vector of the rectangle should also be symmetric,

-
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that is: g(1,n) m g(l, 14-n) (4-5)

for n - 2,3,4,5.

That this fep-ure vector symmetry was not quite achieved voints to

distortion in the input system.

It can be seen from Table 4.1 that the error for images 3-6

is considerablv larger than that for images at 7/12 radian rotation

H increments. This is to be expected since the feature vectors for

images rotated at other than w/12 increments will not, in general,

IIdirectly correspond to the zero radian feature vector (see Section

2.5). The other errors are probably due to input distortion, and

give an idea of the ultimate accuracy of the system. Size invariance

was tested by moving the camera farther from the rectangle and ob-

taining two more images. These are given as samples numbered 18

and 19 in Table 4.1. The area of these two images was reduced by

about a factor of 5 from the other images, producing images less than

1 ~ one-half the size of the comparison image. As can be seen from the

I table, there was little change in the feature vectors.

Once it was verified that the feature extractor was perform-

ing as expected, the next step was to optimize the values of am, M,

and N. This was attempted with the following experiment. An input

space of 60 facial profile images, 6 images per subject, for the 10

subjects was chosen. A classifier of the distance-weighted k-nearest

neighbor type with k fixed at 10 and the (e )2 dependent weight

function (to be described in the next section) was used. The classifier
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searched only the zero angle feature vector sequences, that is,

rotational invariance was not attempted. The authority file depthJ

were set to three, i.e., three feature vectors per class were used to

define each decision surface, and the authority files were filled

using the activity sort traininR algorithm (described in Chapter III).

x I and N for the circular autocorrelation

function were then compared by training the machine on the circular

autocorrelation feature vectors derived from the 60 Images and testing

the recognition accuracy of the machine using the same 60 images.

The results of this experiment are summarized ir Tables 4.2 and 4.3.

Typical feature vectors for parameter sets 1, 3, 4, and 5 are given

in Table 4.4, while Table 4.5 contains the feature vectors for all

120 facial profile images for parameter set 2; am - 1/2, M-l, N=12.

From Table 4.3 it can be seen that subjects 1, 6, and 7 were

consistently misclassified as belonging to another class for all

parameter sets and subiect q was misclassified for 4 of the 5 sets.

1.,,xre was no apparent pattern to the misclassifications t seems

that these particular images are in some way more 'viriable' than

-hB other images and tne region in the feature vector space to u ich

they belong is harder to detine. The low recognition accuracy of

parameter sets 1, 3, and 5 is not surprising when the vectors in

Table 4.4 are examined. For parameter set I (a. W 1) thert are sever-i

zero terms in the featnre vector, terms which contribute no information,

while for parameter set 3 (ar - 1/4) the terms of the feature vectors

exhibit little variation from class to class. The recognition accuracies

V '.
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Paramete ecognition Ac uracyiSet a M N No.Correct %. Correct No. of Classes
m 100% Correct

1 1 1 12 47 78.3 5

2 1/2 1 12 52 86.7 6

3 1/4 1 12 49 81.8 6

4 1/2,/ r2 2 6 51 85.0 6

5 1/3,1 2 6 50 83.3 5

Table 4.2 Recognition Accuracy for Selected Circular Aitocorrelation
Function Parameters.

fParameter Recognition Accuracy, % Corr.act/Class
Set 1 2 3 4 5 6 7 8 9 10

1 50 100 50 100 100 50 50 100 83 100

2 50 100 100 83 100 50 83 100 100 100

3 50 100 100 100 100 67 50 100 50 100

4 50 100 100 100 100 67 67 100 67 100

5 50 83 100 100 100 67 67 100 67 100

Table 4.3 Recogaitlon Accuracy per Class for Selected Circular Auto-
cor:elation Function Parameters.

-. .. . .... . . -- C" -- I . r ' *~i ,=- i i i -



Para- Feature Vector Component, n
meter Clas (1) (2) (3) (4) (5) (6)
Set 1 2 3 4 5 6 7 8 9 10 11 12

1 1 0 ) 0 0 10 31 35 18 5 0 0 0

H 3 1 48 51 52 58 64 68 70 69 66 57 50 49

4 1i6 16 45 58 37 13 (0) (7) (34) (57) (27) (5)

5 1 31 39 57 64 56 35 (0) (4) (31) (54) (25) (4)

1 2 0 0 8 27 40 24 8 0 0 0

3 2 44 44 48 56 62 67 70 68 63 55 47 43

4 2 4 8 38 59 35 11 (0) (2) (27) (55) (25) (3)

5 2 28 33 54 63 53 32 (0) (1) (24) (53) (23) (1)

1 3:0 0 0 1 23 20 13 7 5 0 0 0

"3 3 38 41 47 56 62 64 63 59 53 47 38 36

4 3 1 7 15 42 41 28 11 (0) (6) (36) (36) (22) ý6)

i 5 3 !23 35 54 53 41 25 (0) (4) (32) (31) (18) ý3)

1 4 0 0 0 0 9 19 30 28 15 0 0 0

3 4 40 41 44 49 54 60 63 67 6;5 57 49 43

4 4 4 9 30 50 40 10 (0) (4) (23) (47) (31) (4)

"5 4 23 28 44 56 56 32 (0) (3) (21) (44) (30) (3)

1 5 0 0 0 0 13 32 34 17 4 0 0

3 5 44 47 53 61 67 68 66 64 58 51 47 45

4 5 7 16 46 54 28 13 (0) (6) (39) (54) (20) (6)

-5 5 29 40 60 59 48 34 (0) (5) (37) (51) (it;)

1 6 0 0 0 1 13 31 33 20 6 0 0 0

3 6 38 43 47 57 63 67 65 63 58 51 42 41

Continued...

V .
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Para- Feature Vector Component, n
meter Class (1) (2) (3) (4) (5) (6)
Set 1 2 3 4 5 6 7 8 9 10 11 12

4 6 4 10 39 52 27 n (0) (4) (33) (48) (20) (4)

5 6 21 34 53 59 46 28 (0) (3) (28) (45) (16) (3)

1 7 0 0 0 0 5 24' 40 29 8 0 0 0

3 7 49 51 54 59 65 70 71 71 68 59 54 51

4 7 6 12 39 64 41 15 (0) (5) (30) (61) (31) (6)

5 7 34 38 58 67 60 38 (0) (3) (27) (58) (28) (4)

1 8 0 0 0 0 13 22 20 19 13 0 0 0

3 8 44 50 53 53 55 54 52 54 54 50 49 48

1 4 8 11 20 40 35 20 15 (1) (12) (37) (36) (13) (8)

5 8 31 40 47 44 42 37 (0) (11) (37) (A8) (12) (7)

1 9 0 0 0 1 12 25 34 24 10 0 0 0

3 9 40 44 48 54 58 64 66 67 60 53 45 42

S 9 3 10 29 52 32 10 (0) (3) (24) (48) (24) (3)

5 9 24 34 47 58 49 31 (0) (2) (21) (46' (20) (2)

1 i0 0 0 0 1 4 14 32 30 13 1 0 0

3 10 42 43 44 48 55 60 61 62 59 53 49 45

4 10 9 15 31 49 40 19 (0) (8) (22) (46) (30) (8)

5 10 28 31 46 54 51 38 (0) (6) (19) (41) (27) (6)

Table 4.4 Typical Feature Vectors for Selected Circula:- Autocorrelation
Function Parameters.

'f. . .. .- . rr,- - -
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II of parameter sets 2 and 4 are about equal--the limit here may be the

I] •dimension (MN) of the feature vector. It was decided not to investi-

gate larger dimension feature vectors and on the basis of its recog-

ri tition accuracy and simplicity, parameter set 2 was chosen to be used

with the circular autocorrelation function in the remainder of this

work.

4.3 Comparison of Some Classification Algorithms

In attempting to decide on the type of classifier to be used

.Lin this pattern recognition system, statistical classifiers were re-

]jected because the feature vector sample size was too small to determine

the necessary nrobability densities. Of the non-statistical classi-

fiers the nearest neighbor rule and the distance-weighted k-nearest

neighbor rule were selected as the most likely candidates to give good

I .recognition accuracy. Starting with the distance-weighted k-nearest

neighbor rule, a simple weight function was used:
I

105
"w lep for 0 < e < 500 (4-6)

pq (e +li)T pq

w -0 for e > 500
7i pq pq

T 103 *summed over the k (4-7)
. (epq + 1) smallest epq's _< 500.

.4

k was fixed at 10, so that only the ten lowest epq 's were used in the

weight computation and therefore only the ter highest weights computed;

all other weights being set to zero. This weight function will tend

to give:
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w - 100 for e +0pq pq

1 W 0 fore 41000Wpq epq

Wpq 4 'Wrs for epq ers 1
The above relations show that this weight function satisfies the

criteria for a distance-weighted k-nearest neighbor classifier weight

function as expressed by Dudani [5]. The evidence of an authority

file vector close to an unknown input vector should be weighted

more heavily than the evidence of another authority file vector

which is at a greater distance from the unknown. This is accom-

plished by having a weight function which varies with the distance

between the unknown and authority file vector in such a manner that

the weight decreases for increasing unknown to authority file vector

distance. The above relations deteriorate as the distance between

the unknown and the authority file vector increases (as epq approaches

1000). Any error (distance) above 500 is considered large enough to

make any correspondence between the unknown and authority file vector

unlikely and thus its corresponding weight is set to zero.

With k set to 10, authority files of depth 3, and a feature extractor

with parameter set am - 1/2, M - 1, and N - 12, the classifier was

tested on facial profile images 1-6 of each class.

The authority file vectors were selected to give the best

recognition accuracy on the same 60 images and the result is given

-
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I in Table 4.6 as test 1.

In examining the results of the experiment, it was noticed

that the weight function s~emed to assign too large values to terms

with large errors. Correspondingly, the weight function was modified to;

Sw M for 0 <(e < 500 (4-8)
pq ((epq) 2 + 1)T - pq

w1 1 -o 0 for (epq)2 > 500

.3 3
T - 10 *summed ove5 the k (4-9)

* ((epq'4 1) smallest e- 's < 500
pq pq

All other parameters were held constant and the experiment repeated.

The result Is given as test 2 in Table 4.6. A significant improvement

Aý in recognition accuracy was obtained, and therefore this weight function

was used for all subsequent work.

With the weight function for the distance-weighted k-nearest

neighbor classifier selected, a comparison of this classifier and the

nearest neighbor classifier was performed. For the feature extractor

"parameters am - 1/2, M - 1 and N - 12, k - 10 for the distance-weighted

k-nearest neighbor classifier, and an authority file depth of 3, both

classifiers were trained and tested on the full set of 120 facial profile

.. images. Training was accomplished using the activity sort algorithm

"discussed in Chapter III. The results of this experiment are shown in

Tables 4.7 and 4.R. It can be seen that the results are very similar

for the two classitiers, but influenced by the higher number of classes

classified 100% correctly and the work of Dudani [51, the distance

& o
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Test Weight Recogniton Accuracy
Number Function No. Correct % Correct

1 FEq.(4-6) 45 75.01-

2 Eq.(4-8) 4() 81.7

Table 4.6 Weight Vunction Comparison for the k -Weighted Nearest
Neighbor Rule.

Classifier Recopnition Accuracy 1
Type No. Correct . Correct No. of (1asses

100% Correct

NN 98 81.7 4 •

k-NN 98 81.7 5Vi

Table 4.7 Recognition Accuracy for Two Classifier Types

Classifier Recognition Accuracy, % Correct/Class ii
Type ? 3 4 5 6 7 8 9 10

Ni 75 83 67 100 83 83 58 100 75 92

k-NN 5ý 83 67 83 100 83 67 100 75 100

Table 4.8 Recognition Accuracy per Class for Two Classifier Types

.-

-. -.) " " 1
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Feature Vector MenStandardMean
Component, n Deviation

1 5.01 2.72 4

2 6.65 2.43

3 12.03 2.76

4 21.87 3.76

5 35.98 5,75

6 47.80 8.48

1 7 51.74 10.34

8 44.48 8.89

q 32.91 6.15

1n l9.q3 3.21.1
11 11.67 3.27

12 7.38 2.96

Table 4.9 'Feature Vector Component Means and Standard Deviations

""4;
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weighted k-nearest neighbor classifier was chosen to be used in the

remainder of this work.

In this discussion of classification algorithms, no mention has

been made of feature vector normalization. Feature vector normaliza-

tion was not used in this work for two reasons. First, from the means

and standard deviations of the facial image vector components of

Table 4.3, given in Table 4.q, it can be seen that the standard

deviations are all of the same order of magnitude, indýcating that a

component-by-comoonent normalization would yield little, if any, gain

in recognition accuracy. Second, there is no evidence that a vector

length normalization was warranted. A vector length normalization

would leave the classification dependent only upoL the angles between

the unknown and the authority file vectors.

Based upon the results of the experiments described in this

chapter, the circular autocorrelation parameters were set at am 1/2,

M - I .ind N - 12. It was noticed that for weight equations (4-8)

and (4-9) usually only the first 5 nearest neighbors had significant

weights in the k -weighted nearest neighbor classifier. The distance

weighted k-nearest neighbor classifier parameters were thus selected

as weight equations (4-8) and (4-9), and k - 5.

.1



CHAPTER V

131

5.1 Summary of Results

This thesis has presented a series of experiments on two-

dimensional pattern recognition leading to a system capable of

recognizing human facial profiles. A comparison of two feature ex-

traction techniques was made, one of which hns been used previously

I in an operating system, the other original to this work. Two deter-

S~ministic classification algorithms, a piecewise linear classifier and

a non-linear classifier, were compared. Two heuristic training rules

for authority file vector selection were described and shown to provide

decision surfaces for good class separability. The recognition accu-

E racy of the final system was found to be at least as good as that of

human recognizers presented with the same data.

The circular autocorrelation feature extraction technique de-

veloped in this thesis was shown to be invariant under image size

change and translation, and to have predictable behavior under image

H rotation. Several experiments were performed to determine the optimum

constants for this function and it was found that for a 12-dimensional

V. -feature vector a constant radius of one-half the square

root of the image area and angle increments of 15 degrees gave optimum

results on the test images. The radius constent was found to be not

895
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critical, but for values less than one-half, the feature vectors i
seemed to have less variation from class to class; for values greater

than one-half, several feature vector c,,mronents were zero. In both

cases the recognition accuracy was reduced.

The moment invariant feature extraction technique described by

Hu [35] and used by Oudani [5] was also used for facial profile recog-

nition. In all cases the maximum recognition accuracies obtained using

a moment invariant feature extractor were significantly less than those

obtained using a circular autocorrelatLon feature extractor. Consider-l

ing the 957 recognition accuracy obtained by Dudani on aircraft iden-

tification using moment invariants, the 55-70% recognition accuracy

obtained on facial profiles was disappointingly low. Three possible

reasons for this low recognition accuracy may be advanced. The faý:ial

profile recognition problem was defined with 10 classes while the L v
aircraft recognition problem had only 6. The increased number of

classes increases the difficulty of class separation by the classifi3r

and can thus reduce the recognition accuracy. Facial profiles are

very sinilar with only subtle variations to determine one class from

another, while in many views, different aircraft have distinctly dif- A
ferent silhouettes. Facial profile recognition may therefore be ao, I
more difficult task. This assumption is supported by the recognition

accuracy of humans at the two tasks. Human recognition accuracies

were 73-76% correct for facial profiles and 79-92% correct for aircraft. A
The input system produced images with considerable variation from

sample to sample within a given class. This means that test images i

gci~
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presented to the machine for recognition may vary considerably from

the training image. This effect was less noticeable with the aircraft

images because of the higher image/background contrast ratio, again

indicating that the facial profile recognition problem is more difficult.

In aircraft recognition, a pattern recognition system using the moment

inveriant feature extractor performed slightly better than humans (95%

versus 79-92%), while for facial profile recognition the pattern recog-

nition system using the moment invariant feature extractor performed

jj ~slightly wormi than humans (55-70% versus 73-76%).I

Two weight functions for the distance-weighted k-nearest neigh-

bor classifier were investigated. It was found that the weight function

dependent upon the Euclidian distance squared (eq2p )ave about 7% better
pq

recognition accuracy than the weight function dependent upon Eucltdian

2
distance (epq) Using the weight function dependent upon ep2, it was I•p eq,

found that only the first five nearest neighbors had significant weights

assigned and therefore k was fixed at five instead of depending upon

Euclidian distance. The nearest neighbor classification algorithm was

compared against the distance-weighted k-nearest neighbor classifier. I
Although the significantly better recognition accuracy of the distance-

weighted k-nearest neighbor classifier described by Dudani [5] was not

observed, the distance-weighted k-nearest neighbor classifier did give

a larger number of classes 100% correctly classified. There are two

possible explanations for this. The 'veight function used in Dudani's

classifier differs slightly from that used in this classifier, and

Dudani used different training and test data, while in this comparison

...
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the training data was also used as the test data.

Two heuriatic training algorithms, the bubble sort rule and

the activity sort rule were described and a rationale for their opera-

tion presented. The two sorting rules were compared in a simple

experiment and the activity sort rule was found to give slightly

better recognition accuracy. The number of samples necessary to train

the authority files using the activity sort rule was found to be about

three times the training set size. To verify that the activity sort

rule did indeed select the authority file vectors to providc the best

recognition accuracy on an independent test set, a large sample size

experiment was performed. Using Dudani's aircraft feature vectors and

pattern recognition system, the authority files were generated using

the activity sort rule. After about two passes through the training i

set the recognition accuracy was tested with ar independent test set.

The recognition accuracy was found to be only slightly less than that

obtaiiied by Dudani (92% versus 95%), while the authority file size

was about one-sixth that used by Dudani. These results were taken as
verification of the expected operation of the activity sort rule for

automatic authority file training.

The facial profile recognition system used the circular auto-

correlation feature extractor, the distance-weighted k-nearest neighbor il
classifier and the activity sort rule for training. The 120 facial

profile images were divided into training and test sets and the recog- I]
nition accuracies for various compositions of training and test sets

versus authority file depth were found. The results showed that the _117

:1)
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Smaximum recognition accuracy on the test set did not occur at maximum

ufile depth, but occurred around one-half the maximum file depth. The

results also indicated that maximum recognition accuracy is achieved by

using a training set large enough to contain the less probable feature

vector variations on any class, resulting in a better defined decision

surface. Recognition Lccuracies on the order of 80% (76-86%) were

achieved in several instances and a maximum recognition accuracy of

90% was achieved using test images independent from the training images.

When three human recognizers were presented with the same data, their

maximum recognition accuracy was 7J-76%.

5.2 Extensions of This Research

Like any research, this work has raised more questions than it

has answered. Indeed, every aspect of this work requires further in-

vestigation. The circular autocorrelation function has been shown to

work very well, even better than moment invariants, on this particular

problem. Since circular autocorrelation is computationally both simple

and fact, its performance on other problems might very well be worth

investigating. Dudani (5] has shown that the distance-weighted k-nearest

neighbor rule can perform significantly better than the nearest neighbor

rule. This was not observed in this work, and an investigation into

the reasons for this may be warranted, since the nearest neighbor rule

is a simpler classification algorithm.

The two automatic training rules described in this thesis need

a much more exhaustive treatment. No attempt was made here to
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provide a theoretical explanation of their verformance--this omission

should be corrected. These two rules seem to be very useful for

authority file vector selection, their applicability to other pattern

recognition systems with other feature vector types should be investi-

gated. The erperiment using Dudani's data and the activity file sort

rule described in Section 3.5 shosild be repeated with smaller authority Ii
file depths to determine how the activity sort rule performs under these fj
conditions and just which feature vectors are used.

For facial recognition, several hardware improvements need to

be made. The most glaring fault of the hardware used was the television

camera's inability to reproduce a facial profile accurately. A more I

sophisticated input device, oue able to distinguish between flesh tones

and hair, clothing, and other background colors, is necessary. Probably

the best way to do this is with a color television camera with the capa- {]
bility of selecting one range of colors and rejecting all others. Color

information may also prove useful in the identification process. U

Jagadeesa (45] has recently developed a color television camera interface

for the Ohio State University Department of Electrical Engineering

PDP-9 computer, and it is f'o be expected that results of the use of color

information in this and other image recognition problems will be forth-

coming. The prefiltering, edge extraction, and feature vector extraction

could be speeded up considerably by implementing a binary array processor

in hardware rather than simulation [41].

Besides hardware, other facial images should be investigated.

With the proper input system, repeatable binary images of the front view
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of the face. should he possible. Such images may have the potential

for providin, more information than the profile. Even more infor-

mation may t-e obtained by using several binary images with different

thresholds to obtain a gray scale. The problem of automatic selection

of a face from a scene has been totally ignored. This problem may

have to be solved before a practical recognition system can be produced.

This work along with others [5,6,7] has shown that pattern

recognition of two-dimensional images by machine is possible on a well

defined problem in a laboratory environment. Recognition accuracies

in excess of those achieved by humans have been demonstrated. The

next step is to remove the machine from the laboratory and apply this

knowledge to develop systems for less ideal conditions.

rIl
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APPENDIX A: SELECTED FACIAL PROFILES I

This appendix consists of twenty human facial profile images;

two images per cla.'s. The images were photographed from the Tektronix

611 display after they had been filtered to remove system noise and pro-

duce a smoothed boundary. Excent for class 9, the images were not

selected to show the maximum variation from sample to sample within

a given class; they are typical images and demonstrate the typical q

variations from sample to sample for this input system. Class 8 con- T

tains a reduced size facial profile that was used to check the reccgni- >1
tion systems' size invariance.

A

iK

& ~I.

ifi

.iv



RI

Class I

It

Class 3

SReproduced from •
Cest availa2le copy

i, .. . . .• ... 2'-



"it iI

Class 4

p -f

b4

C ,1

AN

g I °

c I

Class 6



SClass 7

cl s a

Claus 8

4' 

4

Class 9

Ebest available CoPY-

- ----



VT



"+;i

, fl APPENDIX n: SELECTED PROFILES AFTER EDGE EXTRACTION •:

|| This appendix consists of the same twenty facial profiles of•'•

I Appendix A, but after th• front edge of the profile has been e:',tracted. •

It can be s•en that the sample-to-sample variation within a given class

l is less than that of the full profile, •inly because of the removal of

the ha•rline. Width variations •n the extracted edge due to area

H changes It, the full profile are not noticeable (see Section 2.3).
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APPENDIX C: COMPUTER PROGRAMS H

Ii i
This appendix contains the more pertinent programs written for

this thesis. The programs are written in WORTRAN IV, except for

three bit manipulation programs and a random number generator that are

written in PDP-9 assembler. There are three main routines in this f 1#
appendix. RECOG3 is an on-line facial profile recognition routine.

Input is from either the television or a disk file. An image may be I
filtered, stored in a disk file, or both. An identification of the

input image may be requested and various operations on the authority

file are permitted. RECOG4 is the routine that was used to generatej

a file of feature vectors corresponding to the 120 facial profile

images. The images had been filtered using RECOG3 before they were

used with RECOG4. RECOG5 is the routine used to generate an authority

file using either the bubble or activiLy sort rule. The recognition i

accuracy of the authority file may also be tested with this routine.

Because of the experimental nature of this work, the programs

were written as short subroutines that could be called by the variousI

main routines to avoid duplicating large quantities of code. Each

subroutine was designed to perfori one well defined task. CRCTI

corrects a hardware flaw in the television interface by adding some bits

that are not input and deleting some noise points on the border of

the image. FILOP2 allows manipulation of a vector file. The file

may be listed or cleared, or a vector may be entered or deleted.

A
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IFLTR2 removes small noise clusters and smooths the boundary of a

SU binary image. IDFENT2 performs a distance weighted k-nearest neigh-

bor classification of an unknown feature vector for some specified I
iI authority file. RANDOM is a random number generator. SORT1 is an I

implementation of the bubble sort training rule. SORT2 is an im-

plementation of the activity sort training rule. XFRN3 performs the

circular autocorrelation function on a binary image, generating the

12-dimenslonal feature vector. XTRCTl extracts the right-hand

(zero degree) edge of an image, i.e., the front edge of a facial

profile.

Three array processing routines were written in assembler to

complement those written by Miller [3]. !NTRSC counts the number of

correspondinR one-cells in two binary arrays. INVERI complevent.

every cell of a binary array. SHIFT translates a binary image a

specified distance along the x and y axes.
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